
Personalized E-Learning Course Recommendations:
A Chatbot Approach Using LangChain

 Mavin Sao *

Graduate School of Data Science,
Chonnam National University,

Gwangju, South Korea
kr225043@jnu.ac.kr

Hoi-Jeong Lim *
Graduate School of Data Science,

Public Data Analytics Center,
Chonnam National University,

Gwangju, South Korea
hjlim@jnu.ac.kr

Abstract— This study presented a personalized e-learning
method utilizing an intelligent chatbot for course
recommendations. By integrating Large Language Models
(LLMs) with Retrieval-Augmented Generation (RAG), we
developed a recommendation system that aligned with user
learning preferences and goals. The system leveraged a pretrained
embeddings model and vector databases to access a dataset of
16,223 courses from 40 different subjects, sourced from platforms
like edX and Coursera. We evaluated the chatbot's responses by
analyzing query relevance and context consistency score matrices.
The evaluation yielded an average score of 0.77 in both relevance
and consistency metrics. We also conducted response evaluation
through human surveys. The survey focused on response
relevance, comprehensibility, readability, accuracy, and
helpfulness of explanations, achieving high satisfaction ratings
(4.10-4.42 out of 5.0), which provided a more comprehensive
approach to evaluating our RAG responses. Finally, the chatbot
was implemented as a Streamlit web application, enabling user
interaction and feedback collection for future improvements.

Keywords—component; LLM; chatbot; e-learning; retrival-
augmentation-generation

I. INTRODUCTION
The educational landscape has evolved significantly, with e-

learning platforms providing widespread access to information
[1]. However, students face many challenges in navigating
through numerous courses to find options that match their
requirements. The traditional approach requires users to search
independently across multiple e-learning platforms—a process
that is both overwhelming and time-consuming. While recent
advances in Large Language Models (LLMs) can assist in
course discovery, they may generate unreliable responses
containing incorrect information or invalid links [2].

To address these challenges, we propose an intelligent e-
learning course recommendation chatbot application that
employs retrieval augmentation generation techniques. Our
implementation incorporates careful prompt engineering to
enhance context relevance and query consistency. This paper
details the design, implementation, and evaluation of a chatbot
intended to transform how learners access online educational

resources. Our methodology leverages recent advances in
LLMs, incorporating the LangChain framework - an open-
source development framework that simplifies the creation of
LLM-powered applications by providing reusable components
and tools for common operations. LangChain enables
developers to build complex chains of operations that can
handle tasks like document processing, question-answering,
and summarization with minimal effort.

The system uses Retrieval-Augmented Generation (RAG)
technique, and FAISS datastore to process user queries and
deliver tailored course recommendations. It integrates web
scraping for course information collection, data processing for
embedding generation, and prompt engineering for
personalized suggestions, creating a comprehensive solution
that addresses learner needs beyond basic keyword matching.

The main contributions of this study are as follows:
• Novel RAG Implementation for Course

Recommendations: This study presents the first
application of Retrieval-Augmented Generation with
LLMs for personalized course recommendations,
utilizing a comprehensive dataset of 16,223 courses
across 40 subject areas.

• Optimized Technical Architecture: The system
implements FAISS vector storage integrated with the
'all-MiniLM-L6-v2' embedding model, enabling
efficient and precise semantic matching between user
queries and course content.

• Empirical Validation: The system demonstrated robust
performance metrics in both query relevance and
context consistency. Student evaluation yielded high
satisfaction ratings (4.10-4.42 out of 5.0) across
multiple dimensions, including comprehensibility,
accuracy, and helpfulness.

• Practical Application: The implementation features a
user-friendly chatbot interface developed using
Streamlit, demonstrating the system's viability in
educational settings.

* Corresponding Author: Hoi-Jeong Lim

II. RELATED WORK
In recent years, Large Language Models (LLMs) have grown

exponentially in capability and strength [3]. Organizations
increasingly integrate these models into their operations to
enhance decision-making and quality outcomes. To utilize
LLMs with private datasets, a technique called Retrieval
Augmented Generation (RAG) is often employed [4]. RAG is a
process that combines data retrieval from a specific dataset as
context with the generative capabilities of LLMs. This approach
enables organizations to leverage the power of LLMs while
incorporating their own private dataset.

The integration of RAG with LLMs offers several benefits.
First, it allows organizations to take advantage of the vast
knowledge and language understanding capabilities of pre-
trained LLMs. Second, by incorporating private datasets, the
generated output can be tailored to the specific domain and
requirements of the organization. This customization enhances

the accuracy and usefulness of the model's responses.
Furthermore, RAG helps to address concerns related to data
privacy and intellectual property [5]. By keeping the private
dataset separate from the pre-trained LLM, organizations can
maintain control over their sensitive information while still
benefiting from the advanced natural language processing
capabilities of the model.

In [6] study, the authors review LangChain, a novel language
processing model for enhanced PDF document interaction.
They examine its capabilities, architecture, and applications,
evaluating its potential to improve document analysis and its
impact across various domains. In another study [7], the authors
propose a Retrieval-Augmented Generation (RAG) approach to
enhance large language models' ability to answer challenging
science-based questions. They incorporate the Wikipedia6.5M
dataset and combine vector similarity retrieval with the
Platypus2-70B LLM to overcome data scarcity and improve
STEM subject comprehension in limited computational settings.

RAG has been successfully applied in various domains such
as legal document analysis [6] and scientific question-
answering [7]. In this study, we present the first implementation
of RAG specifically for e-learning course recommendations.
We leveraged multiple advanced technologies: Hugging Face's
'all-MiniLM-L6-v2' embedding model for semantic text
representation, FAISS vector database for efficient similarity
search [8], and OpenAI's GPT-4o-mini for response generation.
We enhanced these technologies with optimized prompt
engineering techniques to deliver high-precision course
recommendations that accurately matched user queries. This
combination enabled our system to effectively understand user
requirements and retrieve relevant courses from our database.

III. METHODOLOGY
Below is our methodology for building our recommendation

system. The overall pipeline process can be found in Fig. 1.

A. Data Collecting
To get our data, Selenium WebDriver was employed to

automate the process of collecting course data from edX and
Coursera platforms. Custom scraping scripts were developed to
navigate through course listings and extract relevant
information. The scraping process was designed with

FIGURE 1. OVERALL PIPELINE OF THE COURSE RECOMMENDATION CHATBOT

Input: Topics (list of course topics to scrape)
Output: CSV file containing course information

1: function ScrapeCourses(topics)
2: webDriver ← InitializeWebDriver()
3: allCourses ← empty list
4:
5: for each topic in topics do
6: totalPages ← GetTotalPages(webDriver, topic)
7:
8: for pageNumber from 1 to totalPages do
9: courseURLs ← GetCourseURLs(webDriver, topic,
pageNumber)
10:
11: for each url in courseURLs do
12: courseInfo ← ExtractCourseInfo(webDriver, url)
13: allCourses.append(courseInfo)
14: end for
15: end for
16: end for
17:
18: SaveToCSV(allCourses, "coursera_courses.csv")
19: webDriver.close()
20: end function

FIGURE 2. WEB SCRAPING ALGORITHM FOR COURSE DATA
EXTRACTION

appropriate delays to avoid overloading the servers. The scraped
data includes course titles, sub-information, subjects, ratings,
difficulty levels, institutions, course descriptions, learning
objectives, syllabi, course URLs, and skills outcomes. We
collected 16,223 courses from 40 different subjects which is an
comprehensive amount and diverse subjects. The extraction
algorithm can be found in Fig. 2.

B. Text Embedding Process
Text embedding is a conversion technique that transforms

text into a dense vector embedding. This special number
represents the pattern that allows the computer to understand it.
We rely on a unified embedding process for both course content
and user queries, utilizing the pre-trained Sentence Transformer
model "all-MiniLM-L6-v2" [9]. The all-MiniLM-L6-v2 model
is a popular, lightweight tool that transforms text into a list of
384 numbers while preserving its meaning. For courses, we
begin by cleaning the scraped data by removing duplicates to
ensure consistency. We then combine relevant features such as
title, subject, level, language, institution, learning outcomes,
syllabus, and descriptions into a single text representation for
each course.

User queries undergo a similar transformation, with each
query converted into a dense vector embedding using the same
model. By employing identical embedding techniques for both
courses and queries, we ensure they occupy the same vector
space, enabling direct comparisons and facilitating accurate,
semantically relevant recommendations.

C. FAISS: Facebook AI Similarity Search
All embedded courses were stored in a vector store called

FAISS (Facebook AI Similarity Search). The Vector Store is the
specialized database which used to store dense vectors. It is

designed to store high-dimensional vectors which are
representations of data, especially text. To enable efficient
similarity searches and swift retrieval, we leverage FAISS
(Facebook AI Similarity Search) to create a vector store for our
course embeddings. FAISS, designed for efficient similarity
search and clustering of dense vectors, excels at processing
large datasets.

 In our implementation, we store course embeddings along
with metadata such as title, description, and URL in an FAISS
index. This approach facilitates rapid similarity searches and
quick retrieval of course information, capable of handling
datasets of any size, including those exceeding available RAM.
We save the created index locally, allowing for fast loading and
querying in subsequent sessions without the need for
recomputation.

D. Prompt Template
 Our recommendation process begins with a carefully crafted
prompt template. In Fig. 3, The template is designed to combine
retrieved course information, a structured recommendation
format, and chat history. Its purpose is to guide the language
model in analyzing user queries, selecting relevant courses, and
providing detailed recommendations while maintaining a
conversational tone. By structuring the input in this way, we
ensure that the language model has all the necessary context to
generate personalized and informative course recommendations.

E. Conversation Memory
To enhance personalization over time, we implement a

ConversationSummaryBufferMemory. This component
maintains context across multiple interactions, allowing the
system to remember and refer back to previous conversations.
By preserving key information from past exchanges, the system
can provide more contextually relevant recommendations,
taking into account the user's evolving interests and previous
inquiries. This feature significantly improves the continuity and
coherence of the conversation, making the interaction feel more
natural and personalized.

F. Large Language Model Processing
The core of our recommendation system is powered by GPT-

4o-mini model. The process begins when a user's query is
embedded via Sentence Transformer, allowing FAISS to
retrieve relevant courses based on embedding similarity. These
retrieved courses, along with the user's query and chat history,
are formatted into a prompt template. The GPT-4o-mini model
then processes this integrated information to generate natural,
context-aware course recommendations that align with the
user's interests.

G. Streamlit Chatbot Interface
For our chatbot interface, we leveraged Streamlit, an open-

source Python library that simplifies the creation of web
applications. Streamlit provides a user-friendly framework for
rapidly developing interactive and visually appealing interfaces
without extensive web development experience. To build our
chatbot, we utilized key Streamlit components such as
chat_input() for user message input, chat_message() for

As an AI course recommendation expert, provide
personalized, high-quality suggestions based
on the user's interests, goals, and
background.

Chat History: {chat_history}
User Query: {question}
Relevant Courses: {context}

Response Guidelines:
1. Tone: Warm, professional, and approachable.
2. Analysis: Consider user's query, history,
and educational needs.
3. Recommendations: For each course, include:
 - Title and institution
 - Brief overview
 - Skills to be gained
 - Key topics
 - Level, duration, language
 - Ratings (if available)
 - Course URL (if available)
4. Personalization: Explain how courses align
with user's interests and needs.
Prioritize accuracy, relevance, and user-
centricity to help users make informed
educational decisions.

Recommendation:

FIGURE 3. LARGE LANGUAGE MODEL PROMPT TEMPLATE

displaying both user and bot messages, and session_state
variable for managing conversation history. By following the
streamlit tutorial in building the LLM chatbot application [10],
we obtain a chatbot UI that is clean and easy to use. By
combining Streamlit's powerful features with our RAG systems
we were able to create a responsive, user-friendly chatbot
interface that effectively showcases our course
recommendation system as shown in Fig. 4.

IV. CHATBOT EVALUDATION AND RESULTS
Fig. 5 showcases the chatbot's response to a user's query

about courses in machine learning for finance. The chatbot
successfully recommended two relevant courses in this field.
For each course, the chatbot provided comprehensive details
including:
• The Institution
• A brief course overview
• Skills students will acquire
• Key topics covered
• Course difficulty level
• Language of instruction
• A direct URL to the course page

This structured presentation allows users to quickly compare
the courses and access more information with a single click on
the provided links. The chatbot's response was evaluated
through both automated metrics and human assessment.

A. Automated Metrics
To evaluate our chatbot system's performance, we analyzed

the relevance between user queries and generated responses
using cosine similarity measurements. We created a diverse
dataset of 71 queries covering various subject areas (examples
shown in Table I).

Each query was processed through our RAG system to
generate recommendation responses. To quantify the semantic
alignment between queries and responses, we calculated the
cosine similarity between each query-response pair, allowing us

Query Category

I'm looking to enhance my leadership and
organizational skills. Seeking courses in Business
Management that cover strategic planning, team
management, and operational efficiency.

Business
Management

I want to learn programming from scratch. Looking for
beginner courses in Python, Java, or C++. Programming

I need to strengthen my understanding of data
structures for better coding practices. Seeking courses
that cover arrays, linked lists, trees, and graphs.

Data
Structures

As an intermediate programmer, I'm looking to dive
deep into machine learning for financial applications.
Seeking advanced courses in Machine Learning and
AI.

Machine
Learning

I need to strengthen my statistical analysis skills for
research. Seeking courses that cover probability,
statistical inference, and regression analysis.

Statistics

I want to explore the laws of nature and physical
phenomena. Seeking courses in Physics that cover
mechanics, electromagnetism, and quantum physics.

Physics FIGURE 5. SAMPLE CHATBOT RESPONSES AND
RECOMMENDATIONS

FIGURE 4. USER INTERFACE OF THE COURSE
RECOMMENDATION CHATBOT

TABLE I. EXAMPLES OF GENERATED QUERIES

to assess how well the chatbot's responses matched the users'
original questions. The similarity score for each query-response
pair was computed using the following (1).

cos(𝜃) = !	∙	$

‖!‖‖$‖
 (1)

Where A and B are the numerical vector representations of

Query and Response. For context consistency, cosine similarity
was also calculated between the retrieved context from the
vector store and the chatbot's response. This metric evaluates
how well the response aligns with the context used to generate
the answer.

Evaluation Metric Avg. Score

Query Relevance Score 0.77

Consistency Score 0.77

Table II showed an average score of 0.77 for both relevance and
consistency, demonstrating the chatbot's strong ability to
provide relevant and contextually accurate responses.

B. Human Assessment

We conducted a human evaluation of the chatbot's responses
through a survey that involved 30 students from our graduate
school. The survey focused on five criteria: relevance,
comprehensibility, readability, accuracy, and helpfulness.
Participants rated each criterion on a scale from 1 to 5, and the
results are shown in Fig. 6 and summarized in Table III.
 These scores indicate that the chatbot performed well across
most criteria. The ease of understanding (comprehensibility)
received the highest average score of 4.42, followed by
relevance of responses at 4.39. The readability enhancement
through response format scored 4.26, while the helpfulness of
explanations and accuracy of recommendations scored 4.19 and
4.10 respectively. These results suggest that while the chatbot
excels in delivering comprehensible and relevant responses,
there might be room for improvement in the accuracy of its
course recommendations. Nevertheless, all criteria received
scores above 4.0, indicating strong overall performance across
all evaluated aspects.

Evaluation Metric Avg. Score

Relevance of the chatbot’s response to the given query 4.39

Ease of understanding the chatbot's response 4.42

Enhancement of readability through response format 4.26

Accuracy of the course recommendations provided 4.10

Helpfulness of the explanation given for course
recommendations 4.19

TABLE III. HUMAN EVALUATION RESULTS

TABLE II. AUTOMATED EVALUATION METRICS

A. Relevance of Response to Query

B. Ease of Understanding Response

C. Response Format's Enhancement of Readability

D. Accuracy of Course Recommendations

E. Helpfulness of Course Recommendation Explanation

FIGURE 6. STUDENT SURVEY RESPONSE ANALYSIS

V. CONCLUSION
This study leveraged the OpenAI GPT-4o-mini model to

develop a course recommendation chatbot. Built with
LangChain, the system integrates components like FAISS
vector store, retrievers, prompt templates, Conversation Buffer
Memory, and LLMChain. By employing Retrieval-Augmented
Generation (RAG) and embedding vectors sourced from edX
and Coursera course data, the chatbot delivers personalized
course recommendations tailored to individual user needs.

For evaluation, we conducted both human and automated
assessments. The human evaluation metrics revealed that the
chatbot consistently performed well across five key criteria:
response relevance, comprehensibility, readability, accuracy,
and helpfulness of explanations, achieving high satisfaction
ratings (4.10-4.42 out of 5.0). For the automated evaluation, we
focused on measuring context relevance and consistency. The
analysis examined the relationships between queries, retrieved
contexts, and chatbot responses, achieving an average similarity
score of 0.77.

In future work, we aim to explore alternative vector stores
like ChromeBD and Pinecone, enable real-time dataset updates
to incorporate newly added courses and develop a mobile app
with advanced features. This study underscores the potential of
integrating advanced language models with structured data
retrieval to create intelligent educational resource
recommendation systems.

ACKNOWLEDGEMENTS
This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korean government
(MIST; RS-2023-00242528, 50%). This work was partly
supported by the Innovative Human Resource Development for
the Local Intellectualization program through the Institute of
Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korean government
(MIST) (IITP-2024-RS-2022-00156287, 50%).

REFERENCES
[1] A. Haleem, M. Javaid, M. A. Qadri, and R. Suman, "Understanding the

role of digital technologies in education: A review," Sustainable
Operations and Computers, vol. 3, pp. 275-285, 2022.

[2] S. M. Williamson and V. Prybutok, "The era of artificial intelligence
deception: Unraveling the complexities of false realities and emerging
threats of misinformation," Information, vol. 15, no. 6, p. 299, 2024.

[3] Legal Foundations, "Legal considerations with retrieval augmented
generation (RAG)," unpublished.

[4] M. Klokhoj, "Demystifying RAG: Making AI useful in legal practices,"
unpublished.

[5] Cybersecurity Intelligence, "Revolutionizing legal research & document
analysis with RAG technology," unpublished.

[6] A. Guha et al., "LegalBench-RAG: A benchmark for retrieval-augmented
generation in the legal domain," unpublished.

[7] "Legal and ethical issues in human language technologies 2024," in Proc.
LREC Workshop on Legal and Ethical Issues in Human Language
Technologies, 2024.

[8] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P. Mazaré, M.
Lomeli, L. Hosseini, and H. Jégou, "The Faiss library," unpublished.

[9] N. Reimers and I. Gurevych, "Sentence-BERT: Sentence embeddings
using Siamese BERT-networks," in press.

[10] Build a basic LLM chat app - Streamlit Docs. (n.d.).
https://docs.streamlit.io/develop/tutorials/llms/build-conversational-apps

